Electron Cloud at RHIC <u>Ubaldo Iriso</u>, M. Blaskiewicz, A. Drees, W. Fischer, D. Gassner, O. Gould, J. Gullotta, P. He, H.C. Hseuh, R. Lee, S. Peggs, V. Ponnaiyan, L. Smart, D. Trbojevic, S.Y. Zhang. LARP Collaboration Meeting Sept. 16-18 2003, Port Jefferson, NY #### **Contents** - 1) Introduction: RHIC/LHC EC characteristics - 2) Observations during FY2003 - 3) Electron Cloud simulations - 4) Electron Cloud mapping for RHIC - 5) Conclusions and LHC questions #### 1. Introduction: #### RHIC/LHC electron cloud main parameters #### Beam Parameters Table: (RHIC and LHC) | | RHIC (FY2004) | LHC | |-------------------|---------------------|------------------------| | Number of bunches | 110 | 72/batch (Total: 2808) | | Bunch Intensity | 10^9 Au pb | 10^11 ppb | | Bunch Spacing | 108 ns | 25 ns | | Bunch Length | 5 ns (flattop) | 0.25ns (flattop) | | Energy | 100/250 GeV | 7 TeV | | Circumference | 3.8km | 27km | | Chamber surface | St. St./ NEG | Cu/NEG | | SEY | 2.1/ 1.3 | 2.1/1.3 | | Chamber Geometry | round/R=6cm/R=3.5cm | BS / a=18mm; b=22mm | | | | | ### 2. Observations during FY2003 #### RHIC 2001: -P rise with intense ion beams (A Courtesy of S.Y. Zhang ²During 2002 shutdown, up to 16 ED were installed at RHIC for EC diagnostics. ²That allowed to record EC for Au, d, and p: see next slides... aldo Ivigo IADD Collaboration Macting Sont 16 19 2002 Dont Lefforgon #### 2.1. EC for *Au* during FY2003 ²Highest N for Au achieved in 2003: 8•10⁸ Au-pb ²Experimental threshold: ~7•10⁸ Au-pb I ADD Call about in Martina Cant 16 19 2002 Dant Laffangan Fill #3107: EC produced high P rise right after transition started -->beam lost #### 2.2. EC for d and p during FY2003 ...and the importance of smoothing signals using the RHIC ED... #### 2.3. Use of the slow mode (1Hz sampling) - Follow time evolution of ~minutes using MADC (Multi Analogic to Digital Converter). - Allow correlations between P and I_{wall}, B and I_{wall}. - Allow e- Energy spectra measurement. ²P rise due to electron induce desorption. ²Both P and e- current into the wall (I_{wall}) are ultimate functions of (bunched) beam. #### 2.4. Solenoid field results (1) $_{?}B=27Gauss$ sends signal below noise level => Solenoid field helps! (Fill #3530: $N=10^{11}$ ppb) raldo Ivigo IAPD Collaboration Marting Sont 16 19 2002 Port Leffanger #### 2.4. Solenoid field results (2) ²Fill #3667: For certain values of B, P increases! #### Solenoid Fields - 09 May 2003 ²Resonance effects? Cyclotron frequency does not match Bunch spacing. ²Importance of B allignement? *POSINST* results (P. He). #### 2.3. Solenoid field results (3) B - Sweep during fill #3812. ($N=1.5 \cdot 10^{10} p-pb$). Even at the maximum value of B, V_{ED} is only reduced by a factor of ~3 (not enough to fully suppress the cloud). #### 2.5. e- Energy spectra measurement - ²Large contribution of low Energy e- (<50eV). - e- Energy up to 300 eV (slow mode). - ₂Low Energy e-, low I_{wall} => unlike SPS (and predictions for LHC), scrubbing does not seem useful for RHIC. #### 2.6. Missing bunches observations: *Goal*: avoid triggering the effect by introducing some "missing bunches" along the bunch train. Nomenclature: "filled" bchs + ["empty" bchs] 216 bchs + 4 missing bchs does not avoid multipacting 212 bchs + 8 missing bchs: the ED does not show any signal (althogh small P rise was detected). I ADD Callaboration Martina Cant 16 19 2002 Dant Laffanger #### Summary of Observations: ²EC was evidenced at RHIC during FY2003 for all species ?Solenoids did not provide satisfactory results, but cumbersome results, which are still being analysed. The e-Energy spectra shows large proportion of low Energy e-(<50 eV) => scrubbing does not seem a good solution neither. The missing bunches method gives encouraging results. The 12+[8] configuration is a good candidate: ->we still gain ~30% more Luminosity than with 56 bchs! ### 3. Electron Cloud simulations #### 3. Electron Cloud Simulations codes for RHIC - •Both ECLOUD (F.Zimmermann) and CSEC (M. Blaskiewicz) give similar and consistent results. - •CSEC can control the number of macroparticles -> can run faster. - •CSEC has been up-graded to use different bunch trains and bunch shapes, such as coming from the WCM signals->more real situation! - •After FY2003 run, the conclusion is that the use of missing bunches is the best candidate against EC (if other machine limitations do not coexist, such as transition type P rise, etc (see S.Y. Zhang, PAC'03) # 4. EC mapping for RHIC The EC evolution bunch-to-bunch can be presented by MAPS: $$r_{m+1} = a_1 r_m + a_2 r_m^2$$ lso known as: $r_{m+1} = a \cdot r_m (1 - b \cdot r_m)$ Only 2 parameters: for a given accelerator, all EC ependence can be expressed only on N! Sitting these 2 parameters for N after simulations observations) can give us the evolution cloud ensity after the pass of the mth bunch with only ms!! Very appropriate for the missing bunches studies. ADD Collaboration Meeting Sept 16 19 2002 Port Leffenson #### Question: For a given number of bunches n, in a train of mossible buckets, which is the best way to place the n bunches to minimize EC effect? RHIC case: n=68 bunches in m=110 places Possibilities=m!/(m-n)!n! ~10^30 (not all are relevant, hopefully...) Using CSEC, or ECLOUD each case (meaning a n,m combination) takes between 1h -> days. With MAPS, ~10 ms. #### Example: some 68 bchs possibilities (1) ### Some 68 bchs possibilities (2) ## Timing using CSEC: A 4 turns run, using: N=1x10^9 Au pb **SEY=2.1** R0 = 0.6 Fri Sep 12 17:22:43 EDT 2003 Fri Sep 12 19:46:38 EDT 2003 ## Since we ran CSEC for N=2, 4, 6... • 10^{10} p-pb, we could easily find the fitting parameters a_0 , a_1 . IAPD Collaboration Marting Sept 16 19 2002 Part Leffances ## 2nd and 3rd order fitting parameters: Surface wall parameters: SEY=2.1, R0=0.5 ## Example assuming a 2nd order dependence. Bunch to bunch e- density evolution: #### 5. Conclusions: - ²If we have to live with EC at RHIC, we better find a way to minimize the EC density-->optimize Luminosity ²EC mapping is a suitable solution to find optimum bunch train configurations--> It runs 10⁴ times faster!! - ²In general, one can always "map" the EC for a given accelerator and find the optimum bunch train configuration. #### Question to LHC: ?Is this solution suitable for LHC beam-type? ?Is it plausible to permute m (<72) filled buckets within 72 bunches/batch?